If it's not what You are looking for type in the equation solver your own equation and let us solve it.
70t^2+140t-40=0
a = 70; b = 140; c = -40;
Δ = b2-4ac
Δ = 1402-4·70·(-40)
Δ = 30800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{30800}=\sqrt{400*77}=\sqrt{400}*\sqrt{77}=20\sqrt{77}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-20\sqrt{77}}{2*70}=\frac{-140-20\sqrt{77}}{140} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+20\sqrt{77}}{2*70}=\frac{-140+20\sqrt{77}}{140} $
| 3x=-21/9 | | 0.5r−3=3(4−1.5r) | | 10a-6=64 | | X2-24x=0 | | -3+7v=3+5v | | 125-w=208 | | 5x-4=31,x | | 4(5y+3)-1=23y-7 | | -2x-3+9x=34 | | 5(-2n+6)=1/3(6n+9)+3 | | 4/3*3/4(z-6)=4/3*12 | | 21+x/2=26.5 | | 2(b+7)=24 | | 102-x=269 | | -21-4x=3(6x+7) | | -6+8a=26 | | 2+x+7x=8x+2+7x | | 92=29+7h | | 264=202-y | | 6(7x+1)+3=25x+60 | | -3+3x+6=9 | | 3(-5(2x-4)=10 | | n+7n=-6+7n+8-2 | | 50-y=162 | | -24-12z=-132 | | 4n+4+1+3n=0 | | 16.5+3/2r=12+2r | | 5(3-n)+4=5n-11 | | 5(r-6)=-27+5r | | -29-2(10+7x)=31 | | 243=199-w | | 2+7(x-6)=82 |